The Future of Disease Detection: New Technology Identifies Individual Full-Length Human Proteins

Human Protein and Amino Acid Code in the Background

The illustration shows a human protein and amino acid code in the background. The new FRET X technology is capable of identifying proteins using protein fingerprints. The Chirlmin Joo Lab obtains these unique fingerprints by finding part of the full-length amino acid code (the highlighted C’s and K’s among the blue letters). Credit: TU Delft

In a study published in Nature Nanotechnology, scientists from Delft University of Technology introduced a new technique to identify proteins.

Proteins carry out essential functions in our cells, while playing a crucial role in diseases like cancer and

Incomplete IKEA project

“The study of proteins within cells has been a hot topic for decades, and has made huge advancements, allowing researchers to get a much better idea on what kind of proteins there are, and what function they carry out”, says Mike Filius, first author of the paper.

Currently, scientists use a method called mass spectrometry to identify proteins. The most common mass spectrometry approach is the ‘bottom-up’ approach, in which full-length proteins are cut into smaller fragments, called peptides, which are then measured by the mass spectrometer.

Based on the data from these small fragments, a computer reconstructs the protein.

Filius: “This is a bit similar to your typical IKEA project, where you’re always left with some spare parts you’re not really sure how to fit in. But in the case of proteins, these spare parts may actually contain very valuable information, for example about whether or not such a protein has a harmful structure that causes a disease.”

The protein fingerprint

“In order to identify a protein, you don’t need to know all of the

Amino acids are a set of organic compounds used to build proteins. There are about 500 naturally occurring known amino acids, though only 20 appear in the genetic code. Proteins consist of one or more chains of amino acids called polypeptides. The sequence of the amino acid chain causes the polypeptide to fold into a shape that is biologically active. The amino acid sequences of proteins are encoded in the genes. Nine proteinogenic amino acids are called “essential” for humans because they cannot be produced from other compounds by the human body and so must be taken in as food.

” data-gt-translate-attributes='[{“attribute”:”data-cmtooltip”, “format”:”html”}]’ tabindex=”0″ role=”link”>amino acids; the building blocks of any protein. Instead, you try to obtain sufficient information so that you can identify the protein using a database as a reference, similar to how the police may find a suspect’s identity through a fingerprint,” Filius explains.

“In earlier work, we have shown that every protein has a unique fingerprint, just like the human analog. We realized that we only need to know the location of a few out of all the amino acids of a protein to generate a unique fingerprint from which we can identify the protein,” Raman van Wee, PhD candidate who was involved in the research, adds.

Finding proteins in a haystack

“We can detect these amino acids through molecules that light up under a microscope and are attached to small pieces of SciTechDaily