Spin Secrets Unlocked: New Milestone in Spintronics Could Revolutionize Electronics

Spintronics Computing Technology Concept

Spintronics is a promising field aimed at surpassing conventional electronics by leveraging the electron’s intrinsic spin, aiming to control spin currents for reduced power usage and faster, non-volatile operations with new functionalities. The detection and understanding of spin currents are complex, involving macroscopic voltage measurements and an in-depth understanding of material properties at different temperatures. Recent research has shed light on how spin currents can be predicted and manipulated based on the magnetic properties of materials, revealing the importance of understanding magnetic behaviors and temperature variations for advancing spintronics. Credit: SciTechDaily.coim

Recent advancements in spintronics have enabled better prediction and control of spin currents by studying the magnetic properties and temperature effects on materials.

Spintronics is attracting considerable interest as a promising alternative to conventional electronics, offering significant potential benefits such as lower power consumption, faster operation, non-volatility, and the possibility of introducing new functionalities.

Spintronics exploits the intrinsic spin of electrons, and fundamental to the field is controlling the flows of the spin degree of freedom, i.e., spin currents. Scientists are constantly looking at ways to create, remove, and control them for future applications.

Detecting spin currents is no easy feat. It requires the use of macroscopic voltage measurement, which looks at the overall voltage changes across a material. However, a common stumbling block has been a lack of understanding into how this spin current actually moves or propagates within the material itself.

Temperature Dependence of the Spin Current Signal and Magnon Polarization Above and Below the Magnetic Compensation Temperature

Temperature dependence of the spin current signal and magnon polarization above and below the magnetic compensation temperature. Credit: Yusuke Nambu

“Using neutron scattering and voltage measurements, we demonstrated that the magnetic properties of the material can predict how a spin current changes with temperature,” points out Yusuke Nambu, co-author of the paper and an associate professor at Tohoku University’s Institute for Materials Research (IMR).”

Observations on Magnon Polarization

Nambu and his colleagues discovered that the spin current signal changes direction at a specific magnetic temperature and decreases at low temperatures. Additionally, they found that the spin direction, or magnon polarization, flips both above and below this critical magnetic temperature. This change in magnon polarization correlates with the spin current’s reversal, shedding light on its propagation direction.

Furthermore, the material studied displayed magnetic behaviors with distinct gap energies. This suggests that below the temperature linked to this gap energy, spin current carriers are absent, leading to the observed decrease in the spin current signal at lower temperatures. Remarkably, the spin current’s temperature dependence follows an exponential decay, mirroring the neutron scattering results.

Nambu emphasizes that their findings underscore the significance of understanding microscopic details in spintronics research. “By clarifying the magnetic behaviors and their temperature variations, we can gain a comprehensive understanding of spin currents in insulating magnets, paving the way for predicting spin currents more accurately and potentially developing advanced materials with enhanced performance.”

Reference: “Understanding spin currents from magnon dispersion and polarization: Spin-Seebeck effect and neutron scattering study on Tb3Fe5O12” by Y. Kawamoto, T. Kikkawa, M. Kawamata, Y. Umemoto, A. G. Manning, K. C. Rule, K. Ikeuchi, K. Kamazawa, M. Fujita, E. Saitoh, K. Kakurai and Y. Nambu, 27 March 2024, SciTechDaily