From Impossible to Reality: Researchers Create First Functional Semiconductor Made From Graphene

Graphene Device Grown on a Silicon Carbide Substrate Chip

The team’s graphene device grown on a silicon carbide substrate chip. Credit: Georgia Institute of Technology

Scientists at the Georgia Institute of Technology have developed the world’s first world’s first functional semiconductor made from

Molecular Models of Graphene and Silicon Carbide

Molecular models of graphene and silicon carbide. Credit: Georgia Institute of Technology

“We now have an extremely robust graphene semiconductor with 10 times the mobility of silicon, and which also has unique properties not available in silicon,” de Heer said. “But the story of our work for the past 10 years has been, ‘Can we get this material to be good enough to work?’”

A New Type of Semiconductor

De Heer started to explore carbon-based materials as potential semiconductors early in his career, and then made the switch to exploring two-dimensional graphene in 2001. He knew then that graphene had potential for electronics.

“We were motivated by the hope of introducing three special properties of graphene into electronics,” he said. “It’s an extremely robust material, one that can handle very large currents, and can do so without heating up and falling apart.”

Researchers at the Georgia Institute of Technology have created the world’s first functional semiconductor made from graphene, a single sheet of carbon atoms held together by the strongest bonds known. The breakthrough throws open the door to a new way of doing electronics. Credit: Georgia Institute of Technology

De Heer achieved a breakthrough when he and his team figured out how to grow graphene on silicon carbide wafers using special furnaces. They produced epitaxial graphene, which is a single layer that grows on a crystal face of the silicon carbide. The team found that when it was made properly, the epitaxial graphene chemically bonded to the silicon carbide and started to show semiconducting properties.

Over the next decade, they persisted in perfecting the material at Georgia Tech and later in collaboration with colleagues at the Tianjin International Center for Nanoparticles and Nanosystems at Tianjin University in China. De Heer founded the center in 2014 with Lei Ma, the center’s director and a co-author of the paper.

How They Did It

In its natural form, graphene is neither a semiconductor nor a metal, but a semimetal. A band gap is a material that can be turned on and off when an electric field is applied to it, which is how all transistors and silicon electronics work. The major question in graphene electronics research was how to switch it on and off so it can work like silicon.

But to make a functional transistor, a semiconducting material must be greatly manipulated, which can damage its properties. To prove that their platform could function as a viable semiconductor, the team needed to measure its electronic properties without damaging it.

De Heer’s Patented Induction Furnace Used To Produce Graphene on Silicon Carbide

De Heer’s patented induction furnace used to produce graphene on silicon carbide. Credit: Georgia Institute of Technology

They put atoms on the graphene that “donate” electrons to the system — a technique called doping, used to see whether the material was a good conductor. It worked without damaging the material or its properties.

The team’s measurements showed that their graphene semiconductor has 10 times greater mobility than silicon. In other words, the electrons move with very low resistance, which, in electronics, translates to faster computing. “It’s like driving on a gravel road versus driving on a freeway,” de Heer said. “It’s more efficient, it doesn’t heat up as much, and it allows for higher speeds so that the electrons can move faster.”

The team’s product is currently the only two-dimensional semiconductor that has all the necessary properties to be used in nanoelectronics, and its electrical properties are far superior to any other 2D semiconductors currently in development.

“A long-standing problem in graphene electronics is that graphene didn’t have the right band gap and couldn’t switch on and off at the correct ratio,” said Ma. “Over the years, many have tried to address this with a variety of methods. Our technology achieves the band gap, and is a crucial step in realizing graphene-based electronics.”

Single Crystal Silicon Carbide Wafer That Has Been Cut Into Square Chips

A single crystal silicon carbide wafer that has been cut into square chips. Credit: Georgia Institute of Technology

Moving Forward

Epitaxial graphene could cause a paradigm shift in the field of electronics and allow for completely new technologies that take advantage of its unique properties. The material allows the quantum mechanical wave properties of electrons to be utilized, which is a requirement for SciTechDaily