Duke University researchers have discovered that machine learning algorithms can gain new degrees of transparency and insight into the properties of materials after teaching them known physics.
Incorporating established physics into neural network algorithms helps them to uncover new insights into material properties
According to researchers at Duke University, incorporating known physics into machine learning algorithms can help the enigmatic black boxes attain new levels of transparency and insight into the characteristics of materials.
Researchers used a sophisticated machine learning algorithm in one of the first efforts of its type to identify the characteristics of a class of engineered materials known as metamaterials and to predict how they interact with electromagnetic fields.
The algorithm was essentially forced to show its work since it first had to take into account the known physical restrictions of the metamaterial. The method not only enabled the algorithm to predict the properties of the metamaterial with high
Silicon metamaterials such as this, featuring rows of cylinders extending into the distance, can manipulate light depending on the features of the cylinders. Research has now shown that incorporating known physics into a machine learning algorithm can reveal new insights into how to design them. Credit: Omar Khatib
The results were published in the journal Advanced Optical Materials on May 13th, 2022.
“By incorporating known physics directly into the machine learning, the algorithm can find solutions with less training data and in less time,” said Willie Padilla, professor of electrical and computer engineering at Duke. “While this study was mainly a demonstration showing that the approach could recreate known solutions, it also revealed some insights into the inner workings of non-metallic metamaterials that nobody knew before.”
“Neural networks try to find patterns in the data, but sometimes the patterns they find don’t obey the laws of physics, making the model it creates unreliable,” said Jordan Malof, assistant research professor of electrical and computer engineering at Duke. “By forcing the neural network to obey the laws of physics, we prevented it from finding relationships that may fit the data but aren’t actually true.”
The physics that the research team imposed upon the neural network is called a Lorentz model — a set of equations that describe how the intrinsic properties of a material resonate with an electromagnetic field. Rather than jumping straight to predicting a cylinder’s response, the model had to learn to predict the Lorentz parameters that it then used to calculate the cylinder’s response.
Incorporating that extra step, however, is much easier said than done.
“When you make a neural network more interpretable, which is in some sense what we’ve done here, it can be more challenging to fine-tune,” said Omar Khatib, a postdoctoral researcher working in Padilla’s laboratory. “We definitely had a difficult time optimizing the training to learn the patterns.”
Once the model was working, however, it proved to be more efficient than previous neural networks the group had created for the same tasks. In particular, the group found this approach can dramatically reduce the number of parameters needed for the model to determine the metamaterial properties.
They also found that this physics-based approach to artificial intelligence is capable of making discoveries all on its own.
As an electromagnetic wave travels through an object, it doesn’t necessarily interact with it in exactly the same way at the beginning of its journey as it does at its end. This phenomenon is known as spatial dispersion. Because the researchers had to tweak the spatial dispersion parameters to get the model to work accurately, they discovered insights into the physics of the process that they hadn’t previously known.
“Now that we’ve demonstrated that this can be done, we want to apply this approach to systems where the physics is unknown,” Padilla said.
“Lots of people are using neural networks to predict material properties, but getting enough training data from simulations is a giant pain,” Malof added. “This work also shows a path toward creating models that don’t need as much data, which is useful across the board.”
Reference: “Learning the Physics of All-Dielectric Metamaterials with Deep Lorentz Neural Networks” by Omar Khatib, Simiao Ren, Jordan Malof and Willie J. Padilla, 13 May 2022, Advanced Optical Materials.DOI: 10.1002/adom.202200097
This research was supported by the Department of Energy (DESC0014372).