Scientists have made a breakthrough in nanophotonics by developing a method to measure
This collaborative work involves an innovative approach using single molecules to probe the enhanced interaction of light facilitated purely by these nanoantennas without modification of the nanosystem with near-field probes, achieving a noticeable 30-fold enhancement in radiative decay rates at the single molecule level.
The scientists explain, “Our work focuses on the precise measurement of how light interacts with nanostructures. By using single molecules as probes, we’ve been able to observe and quantify the enhancement in light interaction, a crucial aspect for advancing nanophotonic technologies.”
The research goes beyond mere theoretical exploration, offering practical insights into light-matter interactions. “This isn’t just about observing enhanced light interaction; it’s about measuring it at the single-molecule level with remarkable spatial precision. Our findings are pivotal for future applications in fields where understanding and controlling light at such a small scale are essential.”
The study’s methodology and results underscore the effectiveness of advanced measurement techniques in nanophotonics. “Our research has successfully mapped the spatial distribution of radiative decay rate enhancement, revealing that while there is some mislocalization of single molecules due to their interaction with the structure, this effect is minimal within the gap of the nanoantenna, providing a precise control of bright single-SciTechDaily