Organic dyes accelerate the transport of buffered solar energy.
The sun provides vast amounts of energy to Earth, but solar cells always lose some of this energy. This is an obstacle in the use of organic solar cells, especially for those viable in innovative applications.
A crucial factor in improving their efficiency is improving the transport of the solar energy accumulated in the material. A research team at the Technical University of Munich (TUM) has now demonstrated that certain organic dyes can help build virtual highways for the energy.
Organic solar cells are light, extremely thin energy collectors and as a flexible coating are a perfect fit on almost any surface: Solar cells based on organic
But one disadvantage in many applications is the comparatively poor transport of the energy collected within the material. Researchers are investigating the elementary transport processes of organic solar cells in order to find ways to improve this transport.
Stimulating sunlight
One of these researchers is Frank Ortmann, Professor of Theoretical Methods in Spectroscopy at TUM. He and his colleagues from Dresden focus more than anything on the mutual interaction between light and material – especially the behavior of what are called excitons.
“Excitons are something like the fuel of the sun, which has to be used optimally,” explains Ortmann, who is also a member of the “e-conversion” Excellence Cluster. “When light energy in the form of a
The molecules of the organic dyes, referred to as quinoid merocyanines, make this possible, thanks to their chemical structure and their excellent ability to absorb visible light. Accordingly, they are also suitable for use as the active layer in an organic solar cell, Ortmann explains.
Energy packets in the fast lane
Using spectroscopic measurements and models the researchers were able to observe the excitons racing through the dye molecules. “The value of 1.33 electron volts delivered by our design is far above the values found in organic semiconductors – you could say the organic dye molecules form a kind of super-highway,” Ortmann adds.
These fundamental new findings could pave the way for targeted, more efficient exciton transport in organic solid matter, accelerating the development of organic solar cells and organic light-emitting diodes with even higher performance.
Reference: “Directed exciton transport highways in organic semiconductors” by Kai Müller, Karl S. Schellhammer, Nico Gräßler, Bipasha Debnath, Fupin Liu, Yulia Krupskaya, Karl Leo, Martin Knupfer and Frank Ortmann, 12 September 2023,