New Photonic Materials Could Enable Ultra-Fast Light-Based Computing

Advanced Computer Algorithm Artist's Illustration

The University of Central Florida’s new photonic material overcomes the shortcomings of current topological designs, which provide fewer features and control. The new material also allows for far longer propagation lengths for information packets by minimizing power losses.

Photonic materials are being developed by researchers to allow for powerful and efficient light-based computing

Researchers at the University of Central Florida are developing new photonic materials which may one day be used to enable ultra-fast, low-power light-based computing. The unique materials referred to as topological insulators, resemble wires that have been flipped inside out, with the insulation on the inside and the current flowing along the exterior.

In order to avoid the overheating issue that today’s ever-smaller circuits encounter, topological insulators could be incorporated into circuit designs to enable the packing of more processing power into a given area without generating heat.

The researchers’ most recent study, which was published on April 28 in the journal Nature Materials, presented a brand-new process for creating the materials that make use of a unique, chained honeycomb lattice structure. The linked, honeycombed pattern was laser etched onto a piece of silica, a material often used to create photonic circuits, by the researchers.

The design’s nodes enable the researchers to regulate the current without bending or stretching the photonic wires, which is required for directing the flow of light and thus information in a circuit.

The new photonic material overcomes the drawbacks of contemporary topological designs that offered fewer features and control while supporting much longer propagation lengths for information packets by minimizing power losses.

The researchers envision that the new design approach introduced by the bimorphic topological insulators will lead to a departure from traditional modulation techniques, bringing the technology of light-based computing one step closer to reality.

Topological insulators could also one day lead to

The research was funded by the Defense Advanced Research Projects Agency; the Office of Naval Research Multidisciplinary University Initiative; the Air Force Office of Scientific Research Multidisciplinary University Initiative; the U.S. National Science Foundation; The Simons Foundation’s Mathematics and Physical Sciences division; the W. M. Keck Foundation; the US–Israel Binational Science Foundation; U.S. Air Force Research Laboratory; the Deutsche Forschungsgemein-schaft; and the Alfried Krupp von Bohlen and Halbach Foundation.

Study authors also included Julius Beck, Matthias Heinrich, and Lukas J. Maczewsky with the University of Rostock; Mercedeh Khajavikhan with the University of Southern California; and Alexander Szameit with the University of Rostock.

Christodoulides received his doctorate in optics and photonics from Johns Hopkins University and joined UCF in 2002. Pyrialakos received his doctorate in optics and photonics from Aristotle University of Thessaloniki – Greece and joined UCF in 2020.

Reference: “Bimorphic Floquet topological insulators” by Georgios G. Pyrialakos, Julius Beck, Matthias Heinrich, Lukas J. Maczewsky, Nikolaos V. Kantartzis, Mercedeh Khajavikhan, Alexander Szameit, and Demetrios N. Christodoulides, 28 April 2022, Nature Materials.DOI: 10.1038/s41563-022-01238-w

Source: SciTechDaily